Somebody helps me: Travel video scene detection using web-based context
نویسندگان
چکیده
We conduct video scene detection with the aids of web-based context, especially for travel videos captured by amateur photographers in journeys. Correlations between personal videos and predefined travel schedules, which are used to retrieve related data from general-purpose image/video search engines, are discovered. Because scene boundaries are clearly defined in travel schedules, we segment videos into scenes by checking the discovered cross-media correlation. To make different modalities comparable, keyframes extracted from videos and images retrieved from web are represented by visual word histograms, and the problem of correlation determination is then transformed as an approximate sequence matching problem. We prioritize different visual words according to statistics of retrieved data, and evaluate similarity between images based on the weighting scheme. To systematically determine scene boundaries after finding cross-media correlation, we introduce an energy minimization framework to jointly consider visual, temporal, and context information. Experimental results verify the effectiveness of the proposed idea, and show that it’s promising to utilize cross-media correlation and web-based context in media analysis. Keyword: video scene detection; web-based context; approximate sequence matching; maximum-sum segment; energy minimization
منابع مشابه
Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard
Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملUsing Web Photos for Measuring Video Frame Interestingness
In this paper, we present a method that uses web photos for measuring frame interestingness of a travel video. Web photo collections, such as those on Flickr, tend to contain interesting images because their images are more carefully taken, composed, and selected. Because these photos have already been chosen as subjectively interesting, they serve as evidence that similar images are also inter...
متن کاملAn Improved Motion Vector Estimation Approach for Video Error Concealment Based on the Video Scene Analysis
In order to enhance the accuracy of the motion vector (MV) estimation and also reduce the error propagation issue during the estimation, in this paper, a new adaptive error concealment (EC) approach is proposed based on the information extracted from the video scene. In this regard, the motion information of the video scene around the degraded MB is first analyzed to estimate the motion type of...
متن کاملFire detection using video sequences in urban out-door environment
Nowadays automated early warning systems are essential in human life. One of these systems is fire detection which plays an important role in surveillance and security systems because the fire can spread quickly and cause great damage to an area. Traditional fire detection methods usually are based on smoke and temperature detectors (sensors). These methods cannot work properly in large space a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 95 شماره
صفحات -
تاریخ انتشار 2012